Привет, Хабр!Гиперпараметры — это параметры, которые не учатся в процессе обучения модели. Они задаются заранее. От выбора гиперпараметров напрямую зависит качество и эффективность модели, а их оптимизация может улучшить результаты предсказаний.Традиционный подход к…
Optuna — это фреймворк для для автоматизированного поиска оптимальных гиперпараметров для моделей машинного обучения. Она подбирает оптимальные гиперпараметры методом проб и ошибок.В данной статье представлен обзор фреймворка Optuna, рассмотрены ее основные возможности, базовые примеры использования. Читать далее
Если вы уже пробовали обучать модели, то знаете: выбрал не тот гиперпараметр — получил плохой результат. А перебирать их вручную или даже с помощью GridSearchCV из scikit-learn — долго, муторно и не всегда эффективно. Поэтому сегодня поговорим о том, как заставить компьютер делать эту скучную работу за нас. В этом поможет Optuna — библиотека для автоматической оптимизации гиперпараметров. Она умнее простого перебора и часто находит отличные комбинации параметров гораздо быстрее. Читать далее
Специально к старту курса «Машинное обучение» в этом материале представляем сравнение BOHB и HyperBand — двух передовых алгоритмов оптимизации гиперпараметров нейронной сети и простого случайного поиска оптимальных гиперпараметров. Сравнение выполняется с помощью платформы neptune.ai — инструмента для управления экспериментами в области ИИ. Рисунки, графики, таблицы результатов сравнения — всё это вы найдете под катом. Приятного чтения!