Системы дополненной генерации (RAG) были разработаны для улучшения качества ответа крупной языковой модели (LLM). Когда пользователь отправляет запрос, система RAG извлекает релевантную информацию из векторной базы данных и передает ее в LLM в качестве контекста. Затем LLM использует этот контекст для генерации ответа для пользователя. Этот процесс значительно улучшает качество ответов LLM с меньшим количеством «галлюцинаций». Читать далее
Генерация дополненного извлечения (RAG) стала самым популярным способом предоставления LLM дополнительного контекста для создания адаптированных выходных данных. Это отлично подходит для приложений LLM, таких как чат-боты или агенты ИИ, поскольку RAG предоставляет пользователям…
Автоматизация клиентской поддержки с помощью больших языковых моделей — перспективное направление, но без доработки они не всегда способны дать точные и релевантные ответы. Меня зовут Михаил Крюков, технический директор платформы Robovoice (SL Soft), и в этой статье я…
Процесс Retrieval-Augmented Generation (RAG) представляет собой довольно сложную систему, состоящую из множества компонентов. Вопрос о том, как определить существующие методы RAG и их оптимальные варианты реализации этапов обработки информации для выявления лучших практик. В настоящий момент остается наиболее актуальным. В этой статье я хочу поделиться своим опытом относительно реализации подходов и практик в области RAG систем, который реализует систематический подход к решению этой проблемы. Читать далее