Сегодня мы расскажем, как разрабатывали систему поиска скважин-кандидатов для гидравлического разрыва пласта (ГРП) с использованием машинного обучения (далее – ML) и что из этого вышло. Разберёмся, зачем делать гидравлический разрыв пласта, при чём здесь ML, и почему наш опыт может оказаться полезен не только нефтяникам. Под катом подробная постановка задачи, описание наших IT решений, выбор метрик, создание ML конвейера, разработка архитектуры для выпуска модели в прод. Читать дальше →
Бурение скважин всегда было и будет дорогостоящим занятием, а бурение в таких местах планеты как пустыня Сахара тем более. В объеме капитальных затрат на обустройство месторождений, затраты на бурение добычных скважин могут составлять более 50%, и оптимизация стоимости скважин…
В рамках этой статьи будет использоваться пакет SDK для Машинного обучения Azure для Python 3 для создания и применения рабочей области Службы машинного обучения Azure. Эта рабочая область — основной блок в облаке для экспериментов, обучения и развертывания моделей машинного обучения с помощью Машинного обучения Azure. Читать дальше →
Всем привет. Меня зовут Семён. Я занимаюсь разработкой интеллектуальных приложений для нефтегазовой отрасли в компании «Цифра». В этой статье я и моя коллега Анна Тарасова расскажем, как мы искали решение для проблемы с прихватами при бурении нефтяных скважин с помощью машинного обучения и к чему в результате пришли. Читать далее