Retrieval-Augmented Generation (RAG) – это архитектурный подход к генеративным моделям, который сочетает навыки поиска информации с генеративными возможностями больших языковых моделей (LLM). Идея RAG была предложена в 2020 году, чтобы преодолеть ограничение LLM – замкнутость на знаниях из…
Краткое и понятное описание подхода RAG (Retrieval Augmented Generation) при работе с большими языковыми моделями. Читать далее
В вводной части обзора мы познакомились с концепцией Retrieval Augmented Generation (RAG) и её расширением через методологию RAGAS (Retrieval Augmented Generation Automated Scoring). Мы разобрались, как RAGAS подходит к процессу оценки эффективности и точности RAG-систем.В этой части мы более подробно рассмотрим техническую сторону RAGAS. Как обычно, начнем с более простых и интуитивно понятных примеров, потом перейдем к более сложным сценариям. Читать далее
Привет, Хабр! Недавно у меня появилась задача - собрать RAG-систему для интернет-энциклопедии. В поисках решения я вышел на новый подход к гибридному RAG - “DAT: Dynamic Alpha Tuning for Hybrid Retrieval in Retrieval-Augmented Generation” (Динамическая настройка Альфа-параметра для гибридного поиска в RAG). Поиск по…