Одна из важнейших задач в машинном обучении — детектирование объектов (Object Detection). Недавно был опубликован ряд алгоритмов машинного обучения основанных на глубоком обучении (Deep Learning) для детектирования объектов. Эти алгоритмы занимают одно из центральных мест в практических…
Привет всем! Приглашаем изучить седьмую тему нашего открытого курса машинного обучения! Данное занятие мы посвятим методам обучения без учителя (unsupervised learning), в частности методу главных компонент (PCA — principal component analysis) и кластеризации. Вы узнаете, зачем снижать размерность в данных, как это делать и какие есть способы группирования схожих наблюдений в данных. Читать дальше →
Доброго времени суток, Хабр Настоящей статьей открываю цикл статей о том, как обучать нейронные сети без учителя. (Reinforcement Learning for Neuron Networks) В цикле планирую сделать три статьи по теории и реализации в коде трех алгоритмов обучения нейронных сетей без учителя. Первая статья будет…
FCOS: полностью сверточное одноступенчатое обнаружение объектов - это детектор объектов без привязки. Он решает проблемы обнаружения объектов с помощью метода прогнозирования по пикселям, аналогичного сегментации. Большинство последних детекторов объектов без привязки или без привязки на основе глубокого обучения используют FCOS в качестве основы. Читать далее